Dr. Sunil Kumar Prajapati
Department : Basic Sciences
Research Interests
Algebra
Professional Summary
Postdoctoral Fellow, Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva, Israel September, 2016-June, 2017.
Postdoctoral Fellow, Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel, October, 2014-August,
NBHM Postdoctoral Fellow, Stat Math Unit, Indian Statistical Institute Bangalore, Karnataka, India, July 2013-September 2014.
Visiting Scientist, Stat Math Unit , Indian Statistical Institute Bangalore, Karnataka, India, April 2013-June 2013.
Publications
1S.K. Prajapati and R. Sarma, On the solution of x k = g in a Finite Group, B. Korean Math. Soc., 50(2) (2013) 697-704.
2S.K. Prajapati and B. Sury, On the Total Character of Finite Groups, Int. J. Group Theory, 3(3) (2014) 47-67.
3Mark L. Lewis and S. K. Prajapati, On the existence of Johnson polynomials for nilpotent groups, Algebra Representation Theory, 18(1) (2015), 205-213.
4S.K. Prajapati and R. Sarma, On Group Equations, Bull. Iranian Math. Soc., 41(2) (2015), 315-324.
5M.R. Darafsheh, M. Ghorbani and S.K. Prajapati, On maximal subsets of noncommutating elements in finite p-groups, Bull. Aust. Math. Soc., 92 (2015), 380-389.
6S.K. Prajapati and R. Sarma, Total Character of a group G with (G, Z(G)) as a Generalized Camina Pair, Canad. Math. Bull., 59 (2016), 392-402.
7M. R. Darafsheh, M. Ghorbani and S. K. Prajapati, On the size of maximal subsets of pairwise non-commuting elements in a certain special p-group, J. Comb. Number Theory, 8(2) 2016, 179-183.
8C.P. Anil Kumar and S. K. Prajapati, Maximal non-commuting sets in certain unipotent upper-triangular linear groups,Acta Math. Hungar., 151 (1) (2017), 82-
116.
9S. K. Prajapati and R. Sarma, A Study of the number of roots of x
k = g in a finite group via its Frobenius-Schur Indicators, Algebra Colloquium, 24(1) (2017) 93-108.